Exercise 31

An airplane is located at position $(3,4,5)$ at noon and traveling with velocity $400 \mathbf{i}+500 \mathbf{j}-\mathbf{k}$ kilometers per hour. The pilot spots an airport at position $(23,29,0)$.
(a) At what time will the plane pass directly over the airport? (Assume that the plane is flying over flat ground and that the vector \mathbf{k} points straight up.)
(b) How high above the airport will the plane be when it passes?

Solution

The airplane's position at time t (in hours) is

$$
\mathbf{x}(t)=\mathbf{v} t+\mathbf{x}_{0} \text { kilometers }
$$

where \mathbf{v} is the constant velocity vector and \mathbf{x}_{0} is the airplane's initial position vector.

$$
\begin{aligned}
\mathbf{x}(t) & =(400,500,-1) t+(3,4,5) \\
& =(400 t, 500 t,-t)+(3,4,5) \\
& =(400 t+3,500 t+4,-t+5)
\end{aligned}
$$

Part (a)

Set the airplane's position equal to that of the airport

$$
(400 t+3,500 t+4,-t+5)=(23,29,0)
$$

and match the first two components.

$$
\left.\begin{array}{l}
400 t+3=23 \\
500 t+4=29
\end{array}\right\} \quad \rightarrow \quad t=\frac{1}{20} \text { hours } \times \frac{60 \text { minutes }}{1 \text { hotr }}=3 \text { minutes }
$$

The plane will fly over the airport at 12:03 P.m.
Part (b)
Set $t=1 / 20$ hours in the formula for the airplane's position.

$$
\begin{aligned}
\mathbf{x}\left(\frac{1}{20}\right) & =\left(400 \cdot \frac{1}{20}+3,500 \cdot \frac{1}{20}+4,-\frac{1}{20}+5\right) \\
& =\left(23,29, \frac{99}{20}\right) \text { kilometers }
\end{aligned}
$$

The plane's height above the ground is the third component,

$$
\frac{99}{20} \text { kilometers }=4.95 \text { kilometers. }
$$

